Optimal Denoising and Feature Extraction Methods Using Modified CEEMD Combined with Duffing System and Their Applications in Fault Line Selection of Non-Solid-Earthed Network

Author:

Hou Sizu,Guo WeiORCID

Abstract

As the non-solid-earthed network fails, the zero-sequence current of each line is highly non-stationary, and the noise component is serious. This paper proposes a fault line selection method based on modified complementary ensemble empirical mode decomposition (MCEEMD) and the Duffing system. Here, based on generalized composite multiscale permutation entropy (GCMPE) and support vector machine (SVM) for signal randomness detection, the complementary ensemble empirical mode decomposition is modified. The MCEEMD algorithm has good adaptability, and it can restrain the modal aliasing of empirical mode decomposition (EMD) at a certain level. The Duffing system is highly sensitive when the frequency of the external force signal is the same as that of the internal force signal. For automatically identifying chaotic characteristics, by using the texture features of the phase diagram, the method can quickly obtain the numerical criterion of the chaotic nature. Firstly, the zero-sequence current is decomposed into a series of intrinsic mode functions (IMF) to complete the first noise-reduction. Then an optimized smooth denoising model is established to select optimal IMF for signal reconstruction, which can complete the second noise-reduction. Finally, the reconstructed signal is put into the Duffing system. The trisection symmetry phase estimation is used to determine the relative phase of the detection signal. The faulty line in the non-solid-earthed network is selected with the diagram outputted by the Duffing system.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3