Structural Design with Self-Weight and Inertial Loading Using Simulated Annealing for Non-Gradient Topology Optimization

Author:

Rostami Najafabadi Hossein12ORCID,Martins Thiago C.2,Tsuzuki Marcos S. G.2ORCID,Barari Ahmad1ORCID

Affiliation:

1. Advanced Digital Design, Manufacturing and Metrology Labs (AD2MLabs), Department of Mechanical and Manufacturing Engineering, University of Ontario Institute of Technology (Ontario Tech), Oshawa, ON L1G 0C5, Canada

2. Escola Politécnica, Universidade de São Paulo, São Paulo 05508-030, Brazil

Abstract

This paper explores implementation of self-weight and inertial loading in topology optimization (TO) employing the Simulated Annealing (SA) algorithm as a non-gradient-based technique. This method can be applied to find optimum design of structures with no need for gradient information. To enhance the convergence of the SA algorithm, a novel approach incorporating the crystallization factor is introduced. The method is applied in a benchmark problem of a cantilever beam. The study systematically examines multiple scenarios, including cases with and without self-weight effects, as well as varying point loads. Compliance values are calculated and compared to those reported in existing literature to validate the accuracy of the optimization results. The findings highlight the versatility and effectiveness of the SA-based TO methodology in addressing complex design challenges with considerable self-weight or inertial effect. This work can contribute to structural design of systems where only the objective value is available with no gradient information to use sensitivity-based algorithms.

Funder

FAPESP

National Research Council Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3