Guided Hybrid Modified Simulated Annealing Algorithm for Solving Constrained Global Optimization Problems

Author:

Alnowibet Khalid AbdulazizORCID,Mahdi SalemORCID,El-Alem MahmoudORCID,Abdelawwad MohamedORCID,Mohamed Ali WagdyORCID

Abstract

In this paper, a hybrid gradient simulated annealing algorithm is guided to solve the constrained optimization problem. In trying to solve constrained optimization problems using deterministic, stochastic optimization methods or hybridization between them, penalty function methods are the most popular approach due to their simplicity and ease of implementation. There are many approaches to handling the existence of the constraints in the constrained problem. The simulated-annealing algorithm (SA) is one of the most successful meta-heuristic strategies. On the other hand, the gradient method is the most inexpensive method among the deterministic methods. In previous literature, the hybrid gradient simulated annealing algorithm (GLMSA) has demonstrated efficiency and effectiveness to solve unconstrained optimization problems. In this paper, therefore, the GLMSA algorithm is generalized to solve the constrained optimization problems. Hence, a new approach penalty function is proposed to handle the existence of the constraints. The proposed approach penalty function is used to guide the hybrid gradient simulated annealing algorithm (GLMSA) to obtain a new algorithm (GHMSA) that finds the constrained optimization problem. The performance of the proposed algorithm is tested on several benchmark optimization test problems and some well-known engineering design problems with varying dimensions. Comprehensive comparisons against other methods in the literature are also presented. The results indicate that the proposed method is promising and competitive. The comparison results between the GHMSA and the other four state-Meta-heuristic algorithms indicate that the proposed GHMSA algorithm is competitive with, and in some cases superior to, other existing algorithms in terms of the quality, efficiency, convergence rate, and robustness of the final result.

Funder

The research publication is funded by Researchers Supporting Program at King Saud University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3