A Coupled Simulated Annealing and Particle Swarm Optimization Reliability-Based Design Optimization Strategy under Hybrid Uncertainties

Author:

Yang Shiyuan12,Wang Hongtao12,Xu Yihe3,Guo Yongqiang4,Pan Lidong4,Zhang Jiaming4,Guo Xinkai2,Meng Debiao12ORCID,Wang Jiapeng1

Affiliation:

1. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan 523808, China

3. Glasgow College, University of Electronic Science and Technology of China, Chengdu 611731, China

4. Beijing Research Institute of Mechanical & Electrical Technology Ltd., Beijing 100083, China

Abstract

As engineering systems become increasingly complex, reliability-based design optimization (RBDO) has been extensively studied in recent years and has made great progress. In order to achieve better optimization results, the mathematical model used needs to consider a large number of uncertain factors. Especially when considering mixed uncertainty factors, the contradiction between the large computational cost and the efficiency of the optimization algorithm becomes increasingly fierce. How to quickly find the optimal most probable point (MPP) will be an important research direction of RBDO. To solve this problem, this paper constructs a new RBDO method framework by combining an improved particle swarm algorithm (PSO) with excellent global optimization capabilities and a decoupling strategy using a simulated annealing algorithm (SA). This study improves the efficiency of the RBDO solution by quickly solving MPP points and decoupling optimization strategies. At the same time, the accuracy of RBDO results is ensured by enhancing global optimization capabilities. Finally, this article illustrates the superiority and feasibility of this method through three calculation examples.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Sichuan Science and Technology Program

Students Go Abroad for Scientific Research and Internship Funding Program of University of Electronic Science and Technology of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3