Research on a Bearing Fault Diagnosis Method Based on an Improved Wasserstein Generative Adversarial Network

Author:

Zhu Chengshun1,Lin Wei1ORCID,Zhang Hongji1,Cao Youren1,Fan Qiming1,Zhang Hui1ORCID

Affiliation:

1. School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Abstract

In this paper, an advanced Wasserstein generative adversarial network (WGAN)-based bearing fault diagnosis approach is proposed to bolster the diagnostic efficacy of conventional WGANs and tackle the challenge of selecting optimal hyperparameters while reducing the reliance on sample labeling. Raw vibration signals undergo continuous wavelet transform (CWT) processing to generate time–frequency images that align with the model’s input dimensions. Subsequently, these images are incorporated into a region-based fully convolutional network (R-FCN), substituting the traditional discriminator for feature capturing. The WGAN model is refined through the utilization of the Bayesian optimization algorithm (BOA) to optimize the generator and discriminator’s semi-supervised learning loss function. This approach is verified using the Case Western Reserve University (CWRU) dataset and a centrifugal pump failure experimental dataset. The results showed improvements in data input generalization and fault feature extraction capabilities. By avoiding the need to label large quantities of sample data, the diagnostic accuracy was improved to 98.9% and 97.4%.

Funder

The University—Industry Cooperation Research Project in Jiangsu

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3