A generative adversarial network to speed up optical Monte Carlo simulations

Author:

Trigila CarlottaORCID,Srikanth Anirudh,Roncali EmilieORCID

Abstract

Abstract Detailed simulation of optical photon transport and detection in radiation detectors is often used for crystal-based gamma detector optimization. However, the time and memory burden associated with the track-wise approach to particle transport and detection in commonly used Monte Carlo codes makes optical simulation prohibitive at a system level, where hundreds to thousands of scintillators must be modeled. Consequently, current large system simulations do not include detailed detector models to analyze the potential performance gain with new radiation detector technologies. Generative adversarial networks (GANs) are explored as a tool to speed up the optical simulation of crystal-based detectors. These networks learn training datasets made of high-dimensional data distributions. Once trained, the resulting model can produce distributions belonging to the training data probability distribution. In this work, we present the proof of concept of using a GAN to enable high-fidelity optical simulations of nuclear medicine systems, mitigating their computational complexity. The architecture of the first network version and high-fidelity training dataset is discussed. The latter is generated through accurate optical simulation with GATE/Geant4, and contains the position, direction, and energy distributions of the optical photons emitted by 511 keV gamma rays in bismuth germanate and detected on the photodetector face. We compare the GAN and simulation-generated distributions in terms of similarity using the Jensen–Shannon distance. Excellent agreement was found with similarity values higher than 93.5% for all distributions. Moreover, the GAN speeded the optical photon distribution generation by up to two orders of magnitude. These very promising results have the potential to drastically change the use of nuclear imaging system optical simulations by enabling high-fidelity system-level simulations in reasonable computation times. The ultimate is to integrate the GAN within GATE/Geant4 since numerous applications (large detectors, bright scintillators, Cerenkov-based timing positron emission tomography) can benefit from these improvements.

Funder

NIH

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on a Bearing Fault Diagnosis Method Based on an Improved Wasserstein Generative Adversarial Network;Machines;2024-08-22

2. GPU optimization techniques to accelerate optiGAN—a particle simulation GAN;Machine Learning: Science and Technology;2024-06-01

3. Fast detector timing resolutions with GANs;2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD);2023-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3