Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks

Author:

Pantis-Simut Calin-AndreiORCID,Preda Amanda TeodoraORCID,Ion LucianORCID,Manolescu AndreiORCID,Alexandru Nemnes GeorgeORCID

Abstract

Abstract Accurate and efficient tools for calculating the ground state properties of interacting quantum systems are essential in the design of nanoelectronic devices. The exact diagonalization method fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as the gold-standard for few electron systems. However, by increasing the number of instances to be solved, the computational costs become prohibitive and new approaches based on machine learning techniques can provide a significant reduction in computational time and resources, maintaining a reasonable accuracy. Here, we employ pix2pix, a general-purpose image-to-image translation method based on conditional generative adversarial network (cGAN), for predicting ground state densities from randomly generated confinement potentials. Other mappings were also investigated, like potentials to non-interacting densities and the translation from non-interacting to interacting densities. The architecture of the cGAN was optimized with respect to the internal parameters of the generator and discriminator. Moreover, the inverse problem of finding the confinement potential given the interacting density can also be approached by the pix2pix mapping, which is an important step in finding near-optimal solutions for confinement potentials.

Funder

Romanian Ministry of Research, Innovation and Digitalization, CNCS - UEFISCDI

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3