Abstract
Film cooling is widely applied as an effective way to maintain the turbine blade temperature at an acceptable level. The present paper investigates the overall cooling effectiveness and flow structure by performing conjugate heat transfer simulations for the flat-plate baseline cylindrical and three cratered film-cooling holes. The flow and heat transfer in the fluid domain is obtained using the Shear Stress Transport turbulence model, and the solid conductivity is considered by solving the Laplace equation. Four blowing ratios ranging from 0.5 to 2.0 are studied. The numerical results show that the concentric elliptic cratered hole yields a slightly higher overall cooling effectiveness than the baseline cylindrical hole, but the two contoured cratered holes exhibit great improvements due to the generation of the anti-kidney-shaped vortex pair. The area-averaged overall cooling effectiveness has improved by 5.58–65.30% for the contoured cratered hole. The variation of Biot number results in small change in the area-averaged overall cooling effectiveness. However, the area-averaged overall cooling effectiveness uniformity coefficient depends on the Biot number.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献