Effects of the Magnetic Model of Interior Permanent Magnet Machine on MTPA, Flux Weakening and MTPV Evaluation

Author:

Bianchini ClaudioORCID,Bisceglie Giorgio,Torreggiani AmbraORCID,Davoli MatteoORCID,Macrelli ElenaORCID,Bellini AlbertoORCID,Frigieri MatteoORCID

Abstract

Interior permanent-magnet synchronous machines are widely spreading in automotive and vehicle traction applications, because of their high efficiency over a wide speed range. This capability can be achieved by appropriated control strategies: Maximum Torque per Ampere (MTPA), Flux Weakening (FW) and Maximum Torque per Volt (MTPV). However, these control trajectories are often based on an simplified magnetic model of the electrical machine. In order to improve the evaluation of machine output capabilities, nonlinear magnetic behavior must be modeled. This is not only related to the final application with a given drive and control structure, but also during the design process of the electric machine. In the design process, the output torque Vs. speed characteristic must be calculated following MTPA, MTPV and FW in the most accurate way to avoid significant error. This paper proposes a set of algorithms to compute MTPA, FW and MTPV curves for interior permanent-magnet synchronous machines taking into account the machines’ nonlinearities caused by iron saturation and compares differed approaches to highlight the torque–speed capabilities for the same machine following different methods. The algorithms are based on the maps of the equivalent inductances of a reference interior permanent-magnet synchronous machine and inductances maps were obtained via 2-D Finite Element Analysis over the machine’s operating points in id−iq reference plane. The effects of different 2-D finite element methods are also computed by both standard nonlinear magnetostatic simulations and Frozen Permeability simulations. Results show that the nonlinear model computed via frozen permeability is more accurate than the conventional linear and nonlinear models computed via standard magnetostatic simulations; for this reason, during the electrical machine design, it is important to check the expected performance employing a complete inductance map and frozen permeability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3