A numerical Methodology for Induction Motor Control: Lookup Tables Generation and Steady-State Performance Analysis

Author:

Grano Elia1,Lazek Tomas2,Carello Massimiliana1

Affiliation:

1. Politecnico di Torino

2. Brno University of Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">This paper presents a numerical methodology to generate lookup tables that provide <i>d</i>- and <i>q</i>-axis stator current references for the control of electric motors. The main novelty with respect to other literature references is the introduction of the iron power losses in the equivalent-circuit electric motor model implemented in the optimization routine. The lookup tables generation algorithm discretizes the motor operating domain and, given proper constraints on maximum stator current and magnetic flux, solves a numerical optimization problem for each possible operating point to determine the combination of <i>d</i>- and <i>q</i>- axis stator currents that minimizes the imposed objective function while generating the desired torque. To demonstrate the versatility of the proposed approach, two different variants of this numerical interpretation of the motor control problem are proposed: Maximum Torque Per Ampere and Minimum Electromagnetic Power Loss. A practical example of calculation of the lookup tables for the control of an induction machine is presented and the results of a steady-state performance analysis are shown.</div></div>

Publisher

SAE International

Reference28 articles.

1. Carvalho Pinheiro , H.D. , Messana , A. , and Carello , M. In-Wheel and On-Board Motors in BEV: Lateral and Vertical Performance Comparison 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe) Prague 2022 10.1109/EEEIC/ICPSEurope54979.2022.9854774

2. Carello , M. , Carvalho Pinheiro , H.D. , Longega , L. Di Napoli , L. Design and Modelling of the Powertrain of a Hybrid Fuel Cell Electric Vehicle SAE Int. J. Adv. & Curr. Prac. in Mobility , 3 6 2878 2892 2021 10.4271/2021-01-0734

3. Bianco , E. , Rizzello , A. , Ferraris , A. , and Carello , M. Modeling and Experimental Validation of Vehicle’s Electric Powertrain 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe) Prague 2022 10.1109/EEEIC/ICPSEurope54979.2022.9854612

4. Cubito , C. , Rolando , L. , Ferraris , A. , Carello , M. et al. Design of the Control Strategy for a Range Extended Hybrid Vehicle by Means of Dynamic Programming Optimization 2017 IEEE Intelligent Vehicles Symposium (IV) Los Angeles 2017 10.1109/IVS.2017.7995881

5. Grano , E. , Bianco , E. , Carvalho Pinheiro , H.D. , and Carello , M. MTPA and Flux Weakening Control of Electric Motors: A Numerical Approach 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe) Madrid 2023 10.1109/EEEIC/ICPSEurope57605.2023.10194684

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3