ConvLSTM-Att: An Attention-Based Composite Deep Neural Network for Tool Wear Prediction
Author:
Affiliation:
1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
Abstract
Funder
National Natural Science Foundation of China
Publisher
MDPI AG
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Link
https://www.mdpi.com/2075-1702/11/2/297/pdf
Reference38 articles.
1. Salierno, G., Leonardi, L., and Cabri, G. (2021). The Future of Factories: Different Trends. Appl. Sci., 11.
2. The Influence of Concentration of Hydroxyl Radical on the Chemical Mechanical Polishing of SiC Wafer Based on the Fenton Reaction;Lu;Precis. Eng.,2018
3. Research on Tool Wear Monitoring in Drilling Process Based on APSO-LS-SVM Approach;Chen;Int. J. Adv. Manuf. Technol.,2020
4. Yang, X., Yuan, R., Lv, Y., Li, L., and Song, H. (2022). A Novel Multivariate Cutting Force-Based Tool Wear Monitoring Method Using One-Dimensional Convolutional Neural Network. Sensors, 22.
5. Tool Wear Monitoring Using an Online, Automatic and Low Cost System Based on Local Texture;Mech. Syst. Signal Process.,2018
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploring the Processing Paradigm of Input Data for End-to-End Deep Learning in Tool Condition Monitoring;Sensors;2024-08-15
2. Multi-sensor signal fusion for tool wear condition monitoring using denoising transformer auto-encoder Resnet;Journal of Manufacturing Processes;2024-08
3. Tool wear prediction based on hybrid feature selection;Third International Conference on Electronic Information Engineering and Data Processing (EIEDP 2024);2024-07-05
4. A hybrid tool wear prediction model based on JDA;Engineering Computations;2024-06-25
5. Study of an ISSA-XGBoost model for milling tool wear prediction under variable working conditions;The International Journal of Advanced Manufacturing Technology;2024-06-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3