Exploring the Processing Paradigm of Input Data for End-to-End Deep Learning in Tool Condition Monitoring

Author:

Wang Chengguan1ORCID,Wang Guangping2,Wang Tao3,Xiong Xiyao2,Ouyang Zhongchuan2,Gong Tao13

Affiliation:

1. Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China

2. AVIC Changhe Aircraft Industry (Group) Corporation Ltd., Jingdezhen 333002, China

3. Institute of Ultrasonic Technology, Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China

Abstract

Tool condition monitoring technology is an indispensable part of intelligent manufacturing. Most current research focuses on complex signal processing techniques or advanced deep learning algorithms to improve prediction performance without fully leveraging the end-to-end advantages of deep learning. The challenge lies in transforming multi-sensor raw data into input data suitable for direct model feeding, all while minimizing data scale and preserving sufficient temporal interpretation of tool wear. However, there is no clear reference standard for this so far. In light of this, this paper innovatively explores the processing methods that transform raw data into input data for deep learning models, a process known as an input paradigm. This paper introduces three new input paradigms: the downsampling paradigm, the periodic paradigm, and the subsequence paradigm. Then an improved hybrid model that combines a convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) was employed to validate the model’s performance. The subsequence paradigm demonstrated considerable superiority in prediction results based on the PHM2010 dataset, as the newly generated time series maintained the integrity of the raw data. Further investigation revealed that, with 120 subsequences and the temporal indicator being the maximum value, the model’s mean absolute error (MAE) and root mean square error (RMSE) were the lowest after threefold cross-validation, outperforming several classical and contemporary methods. The methods explored in this paper provide references for designing input data for deep learning models, helping to enhance the end-to-end potential of deep learning models, and promoting the industrial deployment and practical application of tool condition monitoring systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3