Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Reference50 articles.
1. Aghazadeh, F., Tahan, A., & Thomas, M. (2018). Tool condition monitoring using spectral subtraction and convolutional neural networks in milling process. The International Journal of Advanced Manufacturing Technology,98(9–12), 3217–3227. https://doi.org/10.1007/s00170-018-2420-0.
2. Agogino, A., & Goebel, K. (2007). Milling data set. In U. B. BEST lab (Ed.) NASA ames prognostics data repository NASA ames research center, moffett field, CA.(http://ti.arc.nasa.gov/project/prognostic-data-repository).
3. Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks,5(2), 157–166. https://doi.org/10.1109/72.279181.
4. Bhattacharyya, P., Sengupta, D., Mukhopadhyay, S., & Chattopadhyay, A. B. (2008). On-line tool condition monitoring in face milling using current and power signals. International Journal of Production Research,46(4), 1187–1201. https://doi.org/10.1080/00207540600940288.
5. Brocki, L., & Marasek, K. (2015). Deep belief neural networks and bidirectional long-short term memory hybrid for speech recognition. Archives of Acoustics,40(2), 191–195. https://doi.org/10.1515/aoa-2015-0021.
Cited by
157 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献