Affiliation:
1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Abstract
In this paper, a spatial parallel mechanism with five degrees of freedom is studied in order to provide a promising dynamic model for the control design. According to the inverse kinematics of the mechanism, the dynamic model is derived by using the Lagrangian method, and the co-simulation using MSC ADAMS and MATLAB/Simulink is adopted to verify the established dynamic model. Then the pre-trained deep neural network (DNN) is introduced to predict the real-time state of the end-effector of the mechanism. Compared to the traditional Newton’s method, the DNN method reduces the cost of the forward kinematics calculation while ensuring prediction accuracy, which enables the dynamic compensation based on feedback signals. Furthermore, the computed torque control with DNN-based feedback compensation is implemented for the trajectory tracking of the mechanism. The simulations show that, in the most complicated case that involves friction and external disturbance, the proposed controller has better tracking performance. The results indicate the necessity of dynamic modeling in the design of control with high precision.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献