Abstract
In situ maintenance works for nuclear power plants are highly beneficial as they can significantly reduce the current maintenance cycle and cost. However, removing absorber balls in a constrained environment through an inspection port is fairly challenging. In this article, a 3-DOF dual-segment continuum robot system is proposed which is equipped with an end-effector to remove absorber balls by pneumatic conveying. Then, according to the symmetrical layout of actuation ropes, the kinematics of the single-segment continuum robot are extended, and the kinematics equation which is universal to the continuum robot with the dual segment is summarized. In addition, some special kinematics solutions can be obtained according to opposite-bending and feeding characteristics. Finally, the functions of the device are verified by tests. The results show that the continuum robot can smoothly pass through the divider plug and reach any position at the bottom of a ball-storage tank where absorber balls are located with only two segments. In a gas environment, the efficiency of absorber ball removal can reach 58.96 kg/h with a lift of 7.5 m and 48.54 kg/h with a lift of 10 m. This result undoubtedly paves the way for the in-service maintenance of nuclear power plants.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献