Abstract
Network-on-chip (NoC) architectures have become a popular communication platform for heterogeneous computing systems owing to their scalability and high performance. Aggressive technology scaling makes these architectures prone to both permanent and transient faults. This study focuses on the tolerance of a NoC router to permanent faults. A permanent fault in a NoC router severely impacts the performance of the entire network. Thus, it is necessary to incorporate component-level protection techniques in a router. In the proposed scheme, the input port utilizes a bypass path, virtual channel (VC) queuing, and VC closing strategies. Moreover, the routing computation stage utilizes spatial redundancy and double routing strategies, and the VC allocation stage utilizes spatial redundancy. The switch allocation stage utilizes run-time arbiter selection. The crossbar stage utilizes a triple bypass bus. The proposed router is highly fault-tolerant compared with the existing state-of-the-art fault-tolerant routers. The reliability of the proposed router is 7.98 times higher than that of the unprotected baseline router in terms of the mean-time-to-failure metric. The silicon protection factor metric is used to calculate the protection ability of the proposed router. Consequently, it is confirmed that the proposed router has a greater protection ability than the conventional fault-tolerant routers.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献