An Optimized Nature-Inspired Metaheuristic Algorithm for Application Mapping in 2D-NoC

Author:

Sikandar SalehaORCID,Baloch Naveed Khan,Hussain FawadORCID,Amin Waqar,Zikria Yousaf BinORCID,Yu HeejungORCID

Abstract

Mapping application task graphs on intellectual property (IP) cores into network-on-chip (NoC) is a non-deterministic polynomial-time hard problem. The evolution of network performance mainly depends on an effective and efficient mapping technique and the optimization of performance and cost metrics. These metrics mainly include power, reliability, area, thermal distribution and delay. A state-of-the-art mapping technique for NoC is introduced with the name of sailfish optimization algorithm (SFOA). The proposed algorithm minimizes the power dissipation of NoC via an empirical base applying a shared k-nearest neighbor clustering approach, and it gives quicker mapping over six considered standard benchmarks. The experimental results indicate that the proposed techniques outperform other existing nature-inspired metaheuristic approaches, especially in large application task graphs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Network-on-Chip using metaheuristic algorithms: A comprehensive survey;Microprocessors and Microsystems;2023-11

2. Efficient application mapping approach based on grey wolf optimization for network on chip;Journal of Network and Computer Applications;2023-10

3. Electronics Hardware Chip Design for Router–Router Communication;Proceedings of the National Academy of Sciences, India Section A: Physical Sciences;2023-09-30

4. Router-Router Switching Communication and Logic Verification with Configured Hardware Chip;2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3);2023-06-08

5. Multiobjective piecewise regressive elitism spotted hyena optimized mapping for 3D NoC architecture design;International Journal of Information Technology;2023-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3