Deep Learning Model for Global Spatio-Temporal Image Prediction

Author:

Nikezić Dušan P.ORCID,Ramadani Uzahir R.ORCID,Radivojević Dušan S.,Lazović Ivan M.,Mirkov Nikola S.ORCID

Abstract

Mathematical methods are the basis of most models that describe the natural phenomena around us. However, the well-known conventional mathematical models for atmospheric modeling have some limitations. Machine learning with Big Data is also based on mathematics but offers a new approach for modeling. There are two methodologies to develop deep learning models for spatio-temporal image prediction. On these bases, two models were built—ConvLSTM and CNN-LSTM—with two types of predictions, i.e., sequence-to-sequence and sequence-to-one, in order to forecast Aerosol Optical Thickness sequences. The input dataset for training was NASA satellite imagery MODAL2_E_AER_OD from Terra/MODIS satellites, which presents global Aerosol Optical Thickness with an 8 day temporal resolution from 2000 to the present. The obtained results show that the ConvLSTM sequence-to-one model had the lowest RMSE error and the highest Cosine Similarity value. The advantages of the developed DL models are that they can be executed in milliseconds on a PC, can be used for global-scale Earth observations, and can serve as tracers to study how the Earth’s atmosphere moves. The developed models can be used as transfer learning for similar image time-series forecasting models.

Funder

University of Belgrade

Ministry of Education. Science and Technological Development of the Republic of Serbia.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3