Literature Review on Integrating Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) and Deep Neural Networks in Machine Learning for Climate Forecasting

Author:

Munandar Devi1ORCID,Ruchjana Budi Nurani1ORCID,Abdullah Atje Setiawan2,Pardede Hilman Ferdinandus3ORCID

Affiliation:

1. Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 40132, Indonesia

2. Department of Computer Science, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 40132, Indonesia

3. Research Center for Artificial Intelligence and Cybersecurity, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia

Abstract

The issue of climate change holds immense significance, affecting various aspects of life, including the environment, the interaction between soil conditions and the atmosphere, and agriculture. Over the past few decades, a range of spatio-temporal and Deep Neural Network (DNN) techniques had been proposed within the field of Machine Learning (ML) for climate forecasting, using spatial and temporal data. The forecasting model in this paper is highly complex, particularly due to the presence of nonlinear data in the residual modeling of General Space-Time Autoregressive Integrated Moving Average (GSTARIMA), which represented nonstationary data with time and location dependencies. This model effectively captured trends and seasonal data with time and location dependencies. On the other hand, DNNs proved reliable for modeling nonlinear data that posed challenges for spatio-temporal approaches. This research presented a comprehensive overview of the integrated approach between the GSTARIMA model and DNNs, following the six-stage Data Analytics Lifecycle methodology. The focus was primarily on previous works conducted between 2013 and 2022. The review showed that the GSTARIMA–DNN integration model was a promising tool for forecasting climate in a specific region in the future. Although spatio-temporal and DNN approaches have been widely employed for predicting the climate and its impact on human life due to their computational efficiency and ability to handle complex problems, the proposed method is expected to be universally accepted for integrating these models, which encompass location and time dependencies. Furthermore, it was found that the GSTARIMA–DNN method, incorporating multivariate variables, locations, and multiple hidden layers, was suitable for short-term climate forecasting. Finally, this paper presented several future directions and recommendations for further research.

Funder

Padjadjaran University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3