A Generalized Space-Time Autoregressive Moving Average (GSTARMA) Model for Forecasting Air Pollutant in Surabaya

Author:

Akbar M S,Setiawan ,Suhartono ,Ruchjana B N,Prastyo D D,Muhaimin A,Setyowati E

Abstract

Abstract The GSTAR model is a multivariate time series model that has time and location dependencies. The implementation of the GSTAR model was developed using the GSTARMA model by referring to the Autoregressive Moving Average (ARMA) model. This research provides the early warning stage of air pollution in Surabaya by forecasting the content of pollutant, especially the CO (Carbon monoxide). The data used in this research are CO data are taken from three monitoring stations in Surabaya with a period from January, 1st to December 31st, 2018. There are two stages in this research, the first stage is time series regression with a dummy variable from the data pattern, and the second step is modeling residual time series regression with GSTAR and GSTARMA. This research is using two weights, uniform and inverse weight the distances, with two-parameter estimates, namely OLS and SUR. The results given the RMSE values tend to be small by using GSTARMAX(21,[7]1:) model with an inverse weight the distance and OLS parameter estimation for SUF 1, GSTAR(21) model with an inverse weight the distance using SUR parameter estimation on SUF 6, and GSTARMA(21,[7]1) model using an inverse weight the distance and SUR parameter estimation on SUF 7. Based on the results of this research, the GSTARMA model can correct prediction errors from the GSTAR model on CO data.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Forecasting the content of Particular Matter (PM10) in Ambient Air Surabaya City Using Double Seasonal ARIMA (DSARIMA);Chrisdayanti;Jurnal Sains dan Seni ITS,2015

2. A Three Stage Iterative Procedure for Space-Time Modeling;Pfeifer;Technometrics,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3