Assessment of Aquatic Weed in Irrigation Channels Using UAV and Satellite Imagery

Author:

Brinkhoff James,Hornbuckle JohnORCID,Barton Jan

Abstract

Irrigated agriculture requires high reliability from water delivery networks and high flows to satisfy demand at seasonal peak times. Aquatic vegetation in irrigation channels are a major impediment to this, constraining flow rates. This work investigates the use of remote sensing from unmanned aerial vehicles (UAVs) and satellite platforms to monitor and classify vegetation, with a view to using this data to implement targeted weed control strategies and assessing the effectiveness of these control strategies. The images are processed in Google Earth Engine (GEE), including co-registration, atmospheric correction, band statistic calculation, clustering and classification. A combination of unsupervised and supervised classification methods is used to allow semi-automatic training of a new classifier for each new image, improving robustness and efficiency. The accuracy of classification algorithms with various band combinations and spatial resolutions is investigated. With three classes (water, land and weed), good accuracy (typical validation kappa >0.9) was achieved with classification and regression tree (CART) classifier; red, green, blue and near-infrared (RGBN) bands; and resolutions better than 1 m. A demonstration of using a time-series of UAV images over a number of irrigation channel stretches to monitor weed areas after application of mechanical and chemical control is given. The classification method is also applied to high-resolution satellite images, demonstrating scalability of developed techniques to detect weed areas across very large irrigation networks.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference28 articles.

1. Canal Automation for Irrigation Systems: American Society of Civil Engineers Manual of Practice Number 131

2. Aquatic weeds in Victoria: Where and why are they a problem, and how are they being controlled?;Dugdale;Plant Protect. Q.,2013

3. Field‐Measured Hydraulic Resistance Characteristics in Vegetation‐Infested Canals

4. Murrumbidgee Irrigation Company Overviewhttp://www.mirrigation.com.au/ArticleDocuments/199/Fact%20Sheet%20Company%20Overview.pdf.aspx

5. Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3