TOWARDS UAV ASSISTED MONITORING OF AQUATIC VEGETATION WITHIN LARGE RIVERS – THE MIDDLE DANUBE (SERBIA)

Author:

NOVKOVIĆ Maja, ,CVIJANOVIĆ Dušanka,MESAROŠ Minučer,PAVIĆ Dragoslav,DREŠKOVIĆ Nusret,MILOŠEVIĆ Đurađ,ANĐELKOVIĆ Ana,DAMNJANOVIĆ Bojan,RADULOVIĆ Snežana, , , , , , , ,

Abstract

UAV technologies provide a time- and cost-efficient framework for a variety of environmental monitoring domains. It also increases data resolution and provides new insights into observed objects and phenomena, especially within the difficult-to-access and complex for monitoring aquatic habitats. The objective of this study was to develop UAV-based acquisition and GIS-based image processing guidelines for aquatic macrophyte detection and monitoring in large temperate rivers. According to the European standard CEN EN -14184:2014, the assessment of aquatic macrophytes should be performed using the transect approach. Large rivers, such as the Danube, represent an exception and should be evaluated using 1km transects. Therefore, seven transects of the Middle Danube in Serbia were simultaneously surveyed using traditional field methods and novel UAV technology. UAV images were acquired using RGB and multispectral cameras carried by a fixed-wing drone. The images were processed and orthomosaics were classified using Object Based Image Analysis (OBIA), to create digital GIS maps of the river transects. During the traditional monitoring approach, the relative abundance of 22 macrophyte species was recorded along the transects. Using the UAV technology and OBIA approach eight macrophyte classes were distinguished based on dominant macrophyte taxa or plant life form traits. Aquatic macrophytes were 'almost perfectly' distinguished from the orthomosaics, achieving a high classification accuracy of 96 % / 88 % / 0.84 for RGB and 94 % / 97 % / 0.95 Producers /Users accuracy/Kappa index for the multispectral approach. Individual macrophyte classes accuracy varied between 0.5 and 1 Kappa and were generally higher for the multispectral imagery approach. Although the resolution of the taxonomic data is lower, UAV monitoring provided the necessary spatial context of macrophytes distribution and absolute area occupied by macrophytes. It also provided information on the diversity and distribution of habitats along the river. Therefore, the UAV-assisted monitoring approach described in this study can be effectively integrated into macrophyte monitoring during large river expeditions such as the JDS.

Publisher

Asociatia Carpatica de Mediu si Stiintele Pamantului

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3