Managing Water Level for Large Migratory Fish at the Poyang Lake Outlet: Implications Based on Habitat Suitability and Connectivity

Author:

Li HuifengORCID,Zhang Hui,Yu Lixiong,Cao Kun,Wang Dengqiang,Duan Xinbin,Ding Fang,Mao Zhihui,Wang Ke,Liu Shaoping,Wang Sheng,Chen Daqing,Wang Lin

Abstract

River–lake interaction is important for maintaining biodiversity, yet it is vulnerable to hydrological alteration. The connectivity of the channel connecting Poyang Lake and the Yangtze River not only ensures the regular migration of fish but also makes Poyang Lake a feeding and fattening ground for them. Unfortunately, human activities have dramatically changed the hydrodynamic conditions of Poyang Lake, which is experiencing severe drought due to the obvious decline in the water level in autumn and winter, especially since 2003. However, the possible impacts of the changes in the water level on the habitats of migratory fish remain unclear due to the limitation of traditional techniques in spatiotemporal analysis. Here, we combined a hydrodynamic model and habitat suitability model to simulate variations in the suitable habitat area and their connectivity under different water-level conditions. The conditions for the migration pathway of the target fish were obtained by a hydroacoustic survey using the Simrad EY60 echosounder. The results showed that the change in water level will significantly affect the spatiotemporal change in the suitable habitats and their connectivity. In particular, we found the existence of two thresholds that play a dominant role in illuminating the connectivity of effective suitable habitats (HC). Firstly, the maximum value of the weighted usable area (WUA) and HC can be achieved when the water level is more than 16 m. Secondly, when the water level is between 10 and 16 m, the changes in the HC are sensitive and rapid, and the area flooded at this stage is called the sensitive area. HC is a crucial element in fish migration and habitat conditions. Under the condition of continuous drought in the middle reaches of the Yangtze River, our research contributes to clarifying the influence of water level on key habitats for fish and optimizes the practice of river–lake ecological management.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3