Dynamic Monitoring of Poyang Lake Water Area and Storage Changes from 2002 to 2022 via Remote Sensing and Satellite Gravimetry Techniques

Author:

Wang Fengwei12ORCID,Zhou Qing3,Gao Haipeng4,Wen Yanlin15,Zhou Shijian6

Affiliation:

1. Shanghai Sheshan National Geophysical Observatory, Shanghai 201602, China

2. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

3. School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China

4. Bayan Nur Natural Resources Surveying and Mapping Institute, Bayannur 015000, China

5. Shanghai Earthquake Agency, Shanghai 200062, China

6. School of Software, Nanchang Hangkong University, Nanchang 330063, China

Abstract

The monitoring of Poyang Lake water area and storage changes using remote sensing and satellite gravimetry techniques is valuable for maintaining regional water resource security and addressing the challenges of global climate change. In this study, remote sensing datasets from Landsat images (Landsat 5, 7, 8 and 9) and three Gravity Recovery and Climate Experiment (GRACE) and Gravity Follow-on (GRACE-FO) mascon solutions were jointly used to evaluate the water area and storage changes in response to global and regional climate changes. The results showed that seasonal characteristics existed in the terrestrial water storage (TWS) and water area changes of Poyang Lake, with nearly no significant long-term trend, for the period from April 2002 to December 2022. Poyang Lake exhibited the largest water area in June and July every year and then demonstrated a downward trend, with relatively smaller water areas in January and November, confirmed by the estimated TWS changes. For the flood (August 2010) and drought (September 2022) events, the water area changes are 3032 km2 and 813.18 km2, with those estimated TWS changes 17.37 cm and −17.46 cm, respectively. The maximum and minimum Poyang Lake area differences exceeded 2700 km2. The estimated terrestrial water storage changes in Poyang Lake derived from the three GRACE/GRACE-FO mascon solutions agreed well, with all correlation coefficients higher than 0.92. There was a significant positive correlation higher than 0.75 between the area and TWS changes derived from the two independent monitoring techniques. Therefore, it is reasonable to conclude that combined remote sensing with satellite gravimetric techniques can better interpret the response of Poyang Lake to climate change from the aspects of water area and TWS changes more efficiently.

Funder

Natural Science Foundation of China

Shanghai Sheshan National Geophysical Observatory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3