The Effects of Lake Level and Area Changes of Poyang Lake on the Local Weather

Author:

Zan Yulu,Gao YanhongORCID,Jiang YingshaORCID,Pan YongjieORCID,Li Xia,Su Peixi

Abstract

Poyang Lake is the largest freshwater lake in China and is characterized by significant intra-annual variation, with higher water levels and area in the wet season compared to the dry season. However, the effects of the seasonal variation in Poyang Lake on the local weather are still not well-recognized. With the help of the weather research and forecasting (WRF) model, we designed one control experiment (CTL) using the default Poyang Lake level and area data and two sensitivity experiments, EXPT1 and EXPT2, the former representing the higher lake level and the greater area of Poyang Lake in the wet season and the latter representing the lower lake level and the smaller area of Poyang Lake in the dry season, to assess how these changes affect the local weather. The results of EXPT1 show that, as the lake’s level and area increase, the latent heat flux (LH), the sensible heat flux (SH), and the land surface temperature (LST) in the lake area decrease compared to those of the CTL. Meanwhile, the planetary boundary layer height (PBL), the convective available potential energy (CAPE), the wind speed, and the vapor flux over the lake decrease as well, indicating increased atmospheric stratification stability and resulting in a domain-averaged decline in precipitation of −22.3 mm. However, the low lake level and less area in EXPT2 show increasing SH, LST, PBL, and wind speed, and decreasing LH and CAPE compared to those of the CTL. The increasing SH and weakened atmospheric stratification stability in EXPT2 cause a significantly higher wind speed over the eastern part of the lake. As a result, more water vapor is transported to the east side of the lake by westerly upper winds, leading to a decreasing precipitation on the western side of the lake and a slightly increasing precipitation on the eastern side, resulting ultimately in a domain-averaged decline in precipitation of −23.8 mm in the simulation of the low level and less area of Poyang Lake. Although the LH and CAPE decline both in EXPT1 and EXPT2, the main cause is the higher water thermal capacity and lower lake-surface temperature with more lake water for EXPT1 and the lower evaporation with less lake water for EXPT2. Overall, a deeper and larger Poyang Lake will reduce the local temperature, inhibit water evaporation from the lake surface, and make the near-surface atmosphere more stable, resulting in restrained local precipitation. A shrinking lake level and area will raise the local temperature and the instability of the near-surface atmosphere but reduce water vapor and enlarge local wind and circulation, resulting in declining precipitation and a changing fall zone.

Funder

the Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3