The Classification of Riparian Habitats and Assessment of Fish-Spawning Habitat Suitability: A Case Study of the Three Gorges Reservoir, China

Author:

Mao Zhihui12,Ding Fang12,Yuan Lilai12,Zhang Yan3,Ni Zhaohui3,Li Yingren12,Wang Lin12,Li Yunfeng3

Affiliation:

1. Resource and Environmental Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China

2. Scientific Observing and Experimental Station of Fishery Remote Sensing, Ministry of Agriculture and Rural Affairs, Beijing 100141, China

3. Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China

Abstract

After the completion of the Three Gorges Reservoir (TGR), there was a significant and drastic transformation of the original river habitat. These changes led to the loss of the original fish habitat and the emergence of a new habitat. To effectively classify and assess fish-spawning habitats in the TGR, a novel coastal complexity index (CCI) was developed. The CCI was formulated utilizing satellite remote sensing data and considering the river coastal line and river centerline on the river-reach scale. By integrating the CCI with river morphology, five river habitats were identified: the backwater bay, point bar, straight river channel, convex-bank point bar, and concave-bank deep pool. In order to evaluate the suitability of these habitats for sticky-egg-spawning fish, a single-factor habitat suitability curve was constructed using three key habitat factors: the CCI, slope, and vegetation coverage. This process involved the employment of two distinct methods: the habitat utilization method and the habitat preference method. The former only considered the survey data of spawning grounds, while the latter integrated the overall distribution of habitats in the TGR. Subsequently, a habitat suitability index (HSI) was established to assess the overall suitability of the identified habitats for sticky-egg-spawning fish. The results demonstrated a high classification accuracy, with the backwater bay representing the most prevalent habitat type, accounting for 43.31% of the total habitat types. When considering slope and vegetation coverage, the optimal ranges obtained through the two habitat suitability analysis methods were similar. However, for the CCI, there were variations in the optimal ranges obtained using the two methods. The habitat utilization method indicated an optimal interval of 2–4, while the habitat preference method provided an optimal interval of 4–8. Nonetheless, the assessment results for the spawning habitats’ suitability using both methods yielded essentially identical outcomes. Specifically, the backwater bay, convex-bank point bar, and concave-bank deep pool habitats exhibited higher suitability for spawning than point bar and straight river channel habitats. Further analysis revealed that approximately 75% of the 230 identified backwater bays were categorized as high-quality or higher-quality spawning habitats. In the time since this research was conducted, its findings have served as a theoretical foundation for the protection of aquatic biological resources and habitats.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3