A 3D Microfluidic ELISA for the Detection of Severe Dengue: Sensitivity Improvement and Vroman Effect Amelioration by EDC–NHS Surface Modification

Author:

Maeno Hinata,Wong Pooi-FongORCID,AbuBakar SazalyORCID,Yang Ming,Sam Sing-SinORCID,Jamil-Abd Juraina,Shunmugarajoo Anusha,Mustafa Mahiran,Said Rosaida Md,Mageswaren EashwaryORCID,Azmel Azureen,Mat Jelani Anilawati

Abstract

Serum is commonly used as a specimen in immunoassays but the presence of heterophilic antibodies can potentially interfere with the test results. Previously, we have developed a microfluidic device called: 3D Stack for enzyme-linked immunosorbent assay (ELISA). However, its evaluation was limited to detection from a single protein solution. Here, we investigated the sensitivity of the 3D Stack in detecting a severe dengue biomarker—soluble CD163 (sCD163)—within the serum matrix. To determine potential interactions with serum matrix, a spike-and-recovery assay was performed, using 3D Stacks with and without surface modification by an EDC–NHS (N-ethyl-N′-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) coupling. Without surface modification, a reduced analyte recovery in proportion to serum concentration was observed because of the Vroman effect, which resulted in competitive displacement of coated capture antibodies by serum proteins with stronger binding affinities. However, EDC–NHS coupling prevented antibody desorption and improved the sensitivity. Subsequent comparison of sCD163 detection using a 3D Stack with EDC–NHS coupling and conventional ELISA in dengue patients’ sera revealed a high correlation (R = 0.9298, p < 0.0001) between the two detection platforms. Bland–Altman analysis further revealed insignificant systematic error between the mean differences of the two methods. These data suggest the potentials of the 3D Stack for further development as a detection platform.

Funder

Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Malay-sia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3