Enhancement of Convection and Molecular Transport into Film Stacked Structures by Introduction of Notch Shape for Micro-Immunoassay

Author:

Arai Daiki1,Ogata Satoshi1ORCID,Shimizu Tetsuhide1ORCID,Yang Ming1ORCID

Affiliation:

1. Department of Mechanical System Engineering, Faculty of System Design, Tokyo Metropolitan University, Tokyo 192-0397, Japan

Abstract

A 3D-stack microfluidic device that can be used in combination with 96-well plates for micro-immunoassay was developed by the authors. ELISA for detecting IgA by the 3D-stack can be performed in one-ninth of the time of the conventional method by using only 96-well plates. In this study, a notched-shape film was designed and utilized for the 3D-stack to promote circulation by enhancing and utilizing the axial flow and circumferential flow in order to further reduce the reaction time. A finite element analysis was performed to evaluate the axial flow and circumferential flow while using the 3D-stack in a well and design the optimal shape. The 3D-stack with the notched-shape film was fabricated and utilized for the binding rate test of the antibody and antigen and ELISA. As a result, by promoting circulation using 3D-stack with notched-shape film, the reaction time for each process of ELISA was reduced to 1 min, which is 1/60 for 96 wells at low concentrations.

Funder

the Adaptable and Seamless Technology transfer Program through Target-driven R&D (A-STEP) from Japan Science and Technology Agency (JST) Grant , JAPAN

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3