Practices for Eutrophic Shallow Lake Water Remediation and Restoration: A Critical Literature Review

Author:

Pereira Antônio Cavalcante1ORCID,Mulligan Catherine N.1ORCID

Affiliation:

1. Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada

Abstract

Lake water has been impaired with nutrients due to the synergic action of human-made activities and climate change. This situation is increasing eutrophication around the globe faster than before, causing water degradation, loss of its uses, and water-associated economic and health effects. Following the Sustainable Development Goal 6, more precisely its target 6.6, nations are already behind schedule in protecting and restoring water-related ecosystems (i.e., rivers and lakes). As concerns with eutrophication are escalating, eutrophic water remediation practices are the keys for restoring those lake waters. Diverse methodologies have been investigated focusing on the nutrient that limit primary productivity (i.e., phosphorus), but few have been applied to in-lake eutrophic water remediation. Thus, the objective of this paper is to provide an overview and critical comments on approaches and practices for facing eutrophic lake water remediation. Information on the successful cases and possible challenges/difficulties in the peer-reviewed literature are presented. This should be useful for supporting further remediation project selection by the stakeholders involved. In summary, for a successful and durable restoration project, external nutrient inputs need to be managed, followed by holistic and region-specific methods to attenuate internal legacy nutrients that are continually released into the water column from the sediment. When aligned well with stakeholder participation and continuous monitoring, these tools are the keys to long-lasting water restoration.

Funder

NSERC

Concordia University

Titan Environmental Containment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3