Evaluation of Algal Control Measures in Eutrophic Reservoirs Based on Aquatic Ecosystem Models

Author:

Zheng Zhen1,Liao Tingting23,Lin Yafeng4,Zhu Xueyi5,Meng Haobin6

Affiliation:

1. Fuzhou Research Academy of Environmental Sciences, Fuzhou 350011, China

2. Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200434, China

3. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

4. Fuzhou Environmental Monitoring Center Station, Fuzhou 350011, China

5. Danish Trade Council Water & Environment Team, Shanghai 200336, China

6. Key Laboratory of Resource Environment and Geographic Information System, Capital Normal University, Beijing 100048, China

Abstract

The frequency of freshwater cyanobacterial blooms is increasing globally due to climate change and eutrophication, particularly in reservoirs. Reservoir ecosystems exhibit unique characteristics, and there is a complex relationship between factors such as light, temperature, nutrient salts, hydrology, and algal growth. The impact of the other factors on algal growth varies significantly among different reservoirs. Thus, it is crucial to assess the effectiveness of various algal control measures implemented in different reservoirs. This study conducted a comprehensive assessment by establishing a eutrophication model for the Shanzi Reservoir in Fuzhou City. The model incorporated meteorology, hydrology, carbon dynamics, nutrient cycling, and biological communities. The effectiveness of diverse management measures was systematically evaluated. The findings demonstrate that increasing the water level, reducing nutrient salts in sediments, and implementing ecological fish stocking effectively suppressed algal growth to varying degrees and improved nitrogen and phosphorus levels. Lower water levels and ecological fish stocking had a significant impact on algal reproduction, while sediment reduction had a minimal effect. Conversely, lower water levels and ecological fish stocking did not significantly improve nitrogen and phosphorus concentrations in the reservoir, whereas sediment reduction had a noticeable effect. Consequently, the management strategies for the Shanzi Reservoir should prioritize external control measures and the implementation of ecological fish stocking.

Funder

Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering

Environmental Protection Technology Plan Project of Fujian

Science and Technology Projects of Shanghai Investigation, Design & Research Institute Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3