A Cyber-Physical Framework for Optimal Coordination of Connected and Automated Vehicles on Multi-Lane Freeways

Author:

Sakaguchi Yuta,Bakibillah A. S. M.ORCID,Kamal Md Abdus SamadORCID,Yamada Kou

Abstract

Uncoordinated driving behavior is one of the main reasons for bottlenecks on freeways. This paper presents a novel cyber-physical framework for optimal coordination of connected and automated vehicles (CAVs) on multi-lane freeways. We consider that all vehicles are connected to a cloud-based computing framework, where a traffic coordination system optimizes the target trajectories of individual vehicles for smooth and safe lane changing or merging. In the proposed framework, the vehicles are coordinated into groups or platoons, and their trajectories are successively optimized in a receding horizon control (RHC) approach. Optimization of the traffic coordination system aims to provide sufficient gaps when a lane change is necessary while minimizing the speed deviation and acceleration of all vehicles. The coordination information is then provided to individual vehicles equipped with local controllers, and each vehicle decides its control acceleration to follow the target trajectories while ensuring a safe distance. Our proposed method guarantees fast optimization and can be used in real-time. The proposed coordination system was evaluated using microscopic traffic simulations and benchmarked with the traditional driving (human-based) system. The results show significant improvement in fuel economy, average velocity, and travel time for various traffic volumes.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3