Author:
Aruna T. M.,Kumar Piyush,Naresh E.,Divyaraj G. N.,Asha K.,Thirumalraj Arunadevi,Srinidhi N. N.,Yadav Arunkumar
Abstract
AbstractThe transportation infrastructure of the future will be based on autonomous vehicles. When it comes to transportation, both emerging and established nations are keen on perfecting systems based on autonomous vehicles. Transportation authorities in the United States report that driver error accounts for over 60% of all accidents each year. Almost everywhere in the world is the same. Since the idea of self-driving cars involves a fusion of hardware and software. Despite the rapid expansion of the software business and the widespread adoption of cutting-edge technologies like AI, ML, Data Science, Big Data, etc. However, the identification of natural disasters and the exchange of data between vehicles present the greatest hurdle to the development of autonomous vehicles. The suggested study primarily focused on data cleansing from the cars, allowing for seamless interaction amongst autonomous vehicles. This study's overarching goal is to look at creating a novel kind of Support Vector Machine kernel specifically for P2P networks. To meet the kernel constraints of Mercer's theorem, a newly proposed W-SVM (Weighted-SVM) kernel was produced by using an appropriately converted weight vector derived through hybrid optimization. Given the advantages of both the Grey Wolf Optimizer (GWO) and the Elephant Herding Optimisation (EHO), combining them for hybridization would be fantastic. Combining the GWO algorithm with the EHO algorithm increases its convergence speed, as well as its exploitation and exploration performances. Therefore, a new hybrid optimization approach is proposed in this study for selecting weights in SVM optimally. When compared to other machine learning methods, the suggested model is shown to be superior in its ability to handle such issues and to produce optimal solutions.
Funder
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC