Semi-Automated Microfluidic Device Combined with a MiniPCR-Duplex Lateral Flow Dipstick for Screening and Visual Species Identification of Lymphatic Filariae

Author:

Phuakrod Achinya,Kusuwan Navapon,Sripumkhai Witsaroot,Pattamang Pattaraluck,Wongkamchai SirichitORCID

Abstract

Lymphatic filariasis (LF) is a leading cause of permanent disability worldwide that has been listed as a neglected tropical disease by the World Health Organization. Significant progress made by the Global Program to Eliminate Lymphatic Filariasis (GPELF) has led to a substantial decline in the population of the worm that causes LF infection. Diagnostic assays capable of detecting low levels of parasite presence are needed to diagnose LF. There is also a need for new tools that can be used in areas where multiple filarial species are coendemic and for mass screening or for use in a point-of-care setting. In the present study, we applied our previously developed semi-automated microfluidic device in combination with our recently developed mini polymerase chain reaction (miniPCR) with a duplex lateral flow dipstick (DLFD) (miniPCR-DLFD) for rapid mass screening and visual species identification of lymphatic filariae in human blood. The study samples comprised 20 Brugia malayi microfilariae (mf) positive human blood samples, 14 Wuchereria bancrofti mf positive human blood samples and 100 mf negative human blood samples. Microfilariae detection and visual species identification was performed using the microfluidic device. To identify the species of the mf trapped in the microfluidic chips, DNA of the trapped mf was extracted for miniPCR amplification of W. bancrofti and B. malayi DNA followed by DLFD. Thick blood smear staining for microfilariae detection was used as the gold standard technique. Microfilariae screening and visual species identification using our microfluidic device plus miniPCR-DLFD platform yielded results concordant with those of the gold standard thick blood smear technique. The microfluidic device, the miniPCR and the DLFD are all portable and do not require additional equipment. Use of this screening and visual species identification platform will facilitate reliable, cost-effective, and rapid surveillance for the presence of LF infection in resource-poor settings.

Funder

Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3