SPGD: Search Party Gradient Descent Algorithm, a Simple Gradient-Based Parallel Algorithm for Bound-Constrained Optimization

Author:

Syed Shahul Hameed A.ORCID,Rajagopalan Narendran

Abstract

Nature-inspired metaheuristic algorithms remain a strong trend in optimization. Human-inspired optimization algorithms should be more intuitive and relatable. This paper proposes a novel optimization algorithm inspired by a human search party. We hypothesize the behavioral model of a search party searching for a treasure. Motivated by the search party’s behavior, we abstract the “Divide, Conquer, Assemble” (DCA) approach. The DCA approach allows us to parallelize the traditional gradient descent algorithm in a strikingly simple manner. Essentially, multiple gradient descent instances with different learning rates are run parallelly, periodically sharing information. We call it the search party gradient descent (SPGD) algorithm. Experiments performed on a diverse set of classical benchmark functions show that our algorithm is good at optimizing. We believe our algorithm’s apparent lack of complexity will equip researchers to solve problems efficiently. We compare the proposed algorithm with SciPy’s optimize library and it is found to be competent with it.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3