Affiliation:
1. Department of Mathematics, Kohat University of Science & Technology (KUST), Kohat, Khyber Pukhtunkhwa, Pakistan
Abstract
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) and an improved non-dominating sorting multiobjective genetic algorithm (NSGA-II) is two well known multiobjective evolutionary algorithms (MOEAs) in the field of evolutionary computation. This paper mainly reviews their hybrid versions and some other algorithms which are developed for solving multiobjective optimization problems (MOPs. The mathematical formulation of a MOP and some basic definitions for tackling MOPs, including Pareto optimality, Pareto optimal set (PS), Pareto front (PF) are provided in Section 1. Section 2 presents a brief introduction to hybrid MOEAs. The authors present literature review in subsections. Subsection 2.1 provides memetic multiobjective evolutionary algorithms. Subsection 2.2 presents the hybrid versions of well-known Pareto dominance based MOEAs. Subsection 2.4 summarizes some enhanced Versions of MOEA/D paradigm. Subsection 2.5 reviews some multimethod search approaches dealing optimization problems.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献