Analysis of the Depth of Immersion of the Submerged Entry Nozzle on the Oscillations of the Meniscus in a Continuous Casting Mold

Author:

Saldaña-Salas F.,Torres-Alonso E.,Ramos-Banderas J.A.ORCID,Solorio-Díaz G.,Hernández-Bocanegra C.A.

Abstract

In this study the effects of the depth of immersion of the Submerged Entry Nozzles (SEN) on the fluid-dynamic structure, oscillations of the free surface and opening of the slag layer, in a continuous casting mold for conventional slab of steel were analyzed. For this work, a water/oil/air system was used in a 1:1 scale model, using the techniques of Particle Image Velocimetry (PIV), colorimetry and mathematical multiphase simulation. The results of the fluid dynamics by PIV agree with those obtained in the mathematical simulation, as well as with the dispersion of dye. It was observed that working with immersion depths of 100 mm or less could be detrimental to steel quality because they promote surface oscillations of a higher degree of Stokes with high elevations and asymmetry in their three dimensions. In addition, this generates an excessive opening of the oil layer which was corroborated through the quantification of the F index. On the other hand, with depths of immersion in the range of 150–200 mm, lower oscillations were obtained as well as zones of low speed near the wall of the SEN and a smaller opening of the oil layer.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3