Physical modeling and numerical investigation of fluid flow and solidification behavior in a slab caster mold using hexa‐furcated nozzle

Author:

Sharma Kapil Kumar12ORCID,Kumar Rajneesh1,Jha Pradeep Kumar1

Affiliation:

1. Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee Roorkee Uttarakhand India

2. Department of Mechanical Engineering Graphic Era Deemed to be University Dehradun Uttarakhand India

Abstract

AbstractSlag entrapment from metal–slag interface during continuous casting operations has been a major area of concern for steelmakers globally. The presence of inactive regions in the upper region of the mold poses another challenge. Proper flow behavior of the molten metal coming out of the nozzle in the mold is required to overcome these challenges. Nozzle design greatly affects the flow pattern of the molten steel inside the mold. The present investigation is an attempt to study the flow and solidification behavior in a slab caster mold with the use of a novel‐designed hexa‐furcated nozzle using numerical investigation results. The casting speed and submerged entry nozzle (SEN) depth are varied to study the effect of these parameters on minimizing the inactive zones in the mold and the steel/slag interface fluctuations. The results show that the interface fluctuation increases at higher casting speed and lower SEN depth. The residence time distribution (RTD) analysis was also performed for different cases to investigate the flow behavior. The validation of the fluid flow and RTD curve inside the computational domain is carried out with the use of physical modeling.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3