Design and Optimization of the Internal Geometry of a Nozzle for a Thin-Slab Continuous Casting Mold

Author:

Chiwo Fernando S.1ORCID,Susunaga-Notario Ana del Carmen2ORCID,Betancourt-Cantera José Antonio3ORCID,Pérez-Bustamante Raúl3,Mercado-Lemus Víctor Hugo3ORCID,Méndez-Lozoya Javier4,Barrera-Cardiel Gerardo5,García-Herrera John Edison6,Arcos-Gutiérrez Hugo6ORCID,Garduño Isaías E.6ORCID

Affiliation:

1. CIATEQ A.C., Eje 126 No. 225, Zona Industrial del Potosí, San Luis Potosí 78395, Mexico

2. CONAHCYT—ICAT Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Col. UNAM, C.U., Delegación Coyoacán, Ciudad de Mexico 04510, Mexico

3. CONAHCYT—Corporación Mexicana de Investigación en Materiales (COMIMSA), Ciencia y Tecnología No. 790, Fraccionamiento Saltillo 400, Saltillo 25290, Mexico

4. Instituto Tecnológico de San Luis Potosí, Tecnológico S/N, Col. Unidad, Ponciano Arriaga, Soledad de Graciano Sánchez 78436, Mexico

5. Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Mexico

6. CONAHCYT—CIATEQ A.C., Eje 126 No. 225, Zona Industrial del Potosí, San Luis Potosí 78395, Mexico

Abstract

Understanding the phenomena that cause jet oscillations inside funnel-type thin-slab molds is essential for ensuring continuous liquid steel delivery, improving flow pattern control, and increasing plant productivity and the quality of the final product. This research aims to study the effect of the nozzle’s internal design on the fluid dynamics of the nozzle-mold system, focusing on suppressing vorticity generation below the nozzle’s tip. The optimized design of the nozzle forms the basis of the results obtained through numerical simulation. Mathematical modeling involves fundamental equations, the Reynolds Stress Model for turbulence, and the Multiphase Volume of Fluid model. The governing equations are discretized and solved using the implicit iterative-segregated method implemented in FLUENT®. The main results demonstrate the possibility of controlling jet oscillations even at high casting speeds and deep dives. The proposed modification in the internal geometry of the nozzle is considered capable of modifying the flow pattern inside the mold. The geometric changes correspond with 106% more elongation than the original nozzle; the change is considered 17% of an inverted trapezoidal shape. Furthermore, there was a 2.5 mm increase in the lower part of both ports to compensate for the inverted trapezoidal shape. The newly designed SEN successfully eliminated the issue of jet oscillations inside the mold by effectively preventing the intertwining of the flow. This improvement is a significant upgrade over the original design. At the microscale, a delicate force balance occurs at the tip of the nozzle’s internal bifurcation, which is influenced by fluctuating speeds and ferrostatic pressure. Disrupting this force balance leads to increased oscillations, causing variations in the mass flow rate from one port to another. Consequently, the proposed nozzle optimization design effectively controls microscale fluctuations above this zone in conjunction with changes in flow speed, jet oscillation, and metal–slag interface instability.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3