The Effect of Abrasive Waterjet Machining Parameters on the Condition of Al-Si Alloy

Author:

Kulisz MonikaORCID,Zagórski IreneuszORCID,Korpysa JarosławORCID

Abstract

This paper analyses the effect of the abrasive waterjet cutting parameters’ modification on the condition of the workpiece surface layer. The post-machined surface of casting aluminium alloys, AlSi10Mg and AlSi21CuNi, was characterised in terms of surface roughness and irregularities, chamfering, and microhardness in order to reveal the effect that variable jet feed rate, abrasive flow rate, and sample height (thickness of the cut material) have on the quality of surface finish. From the analysis of the results, it emerges that the surface roughness remains largely unaffected by changes in the sample height h or the abrasive flow rate ma, whereas it is highly susceptible to the increase in the jet feed rate vf. It has been shown that, in principle, the machining does not produce the strengthening effect, that is, an increase in microhardness. Owing to the irregularities that are typically found on the workpieces cut with higher jet feed rates vf, additional surface finish operations may prove necessary. In addition, chamfering was found to occur throughout the entire range of speeds vf. The statistical significance of individual variables on the 2D surface roughness parameters, Ra/Rz/RSm, was determined using factorial analysis of variance (ANOVA). The results were verified by means of artificial neural network (ANN) modelling (radial basis function and multi-layered perceptron), which was employed to predict the surface roughness parameters under consideration. The obtained correlation coefficients show that ANNs exhibit satisfying predictive capacity, and are thus a suitable tool for the prediction of surface roughness parameters in abrasive waterjet (AWJ) technology.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3