Investigation of the mechanical, corrosion, and tribological characteristics of AZ61 Mg with boron carbide nano particles via the stir casting route

Author:

Sakthi S.1,Mahendran S.1,Meignanamoorthy M.2,Mohanavel V.3

Affiliation:

1. 1 Department of Mechanical Engineering, University College of Engineering , Nagapattinam , Thirukuvalai-610204 , Tamilnadu , India

2. 2 Department of Mechanical Engineering, Chendhuran College of Engineering and Technology , Lena Vilakku , Pudukkottai – , Tamilnadu , India

3. 3 Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research , Chennai – , Tamilnadu , India

Abstract

Abstract Magnesium composites are innovative, compact, and distinctive materials. Because of their low density, magnesium composites are suitable for applications in the automobile, aviation, semiconductor, and pharmaceutical sectors. To enhance the mechanical wear and corrosion behavior of theAZ61 Mg alloy, different weight percentages of nano-B4C reinforcements (2.5, 5, 7.5, and 10wt%) were strengthened with magnesium matrix. Fabrication of magnesium composites was achieved through the stir casting method. The as-cast specimens were subjected to microstructural analysis, which showed that the B4C nanoparticles were dispersed uniformly, well bonded to the matrix, and had a minimal level of porosity. This shows that the inclusion of B4C nanoparticles has aninsignificanteffect on the microstructure of the as-cast material. The material’s tensile strength, compressive strength, hardness, corrosion resistance, and wear resistance were all greatly increased by the Mg17Al12 phase’s fracture and dispersion. Scanning electron microscopy was utilized to inspect the surfaces of AZ61/B4C nanocomposites and witnessed the uniform dispersal of reinforcement within the matrix.The maximum value for mechanical properties was obtained for AZ61/7.5wt%B4C nanocomposite and the lowest value was found to be the corrosion test. These results show that the AZ61/7.5wt%B4C nanocomposite is a superior material for aerospace and automotive engineering components where high compressive strength, corrosion resistance, and wear resistance are required.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3