Influence of machining process of MoS2/B4C/Az31 Mg alloy composite and its tribological characteristics

Author:

Arunachalam Jothi1,R Saravanan1ORCID,Sathish T.1ORCID,Makki Emad2ORCID,Giri Jayant3ORCID

Affiliation:

1. Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University 1 , Chennai, Tamil Nadu, India

2. Department of Mechanical Engineering, College of Engineering and Architecture, Umm Al-Qura University 2 , Makkah 24382, Saudi Arabia

3. Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering 3 , Nagpur, India

Abstract

The automotive, biomedical, and aerospace industries are among those with a rising need for lightweight materials with enhanced mechanical and tribological qualities. Composites based on magnesium alloys have attracted interest because of their excellent strength-to-weight ratio and promise to improve component performance. Magnesium (Mg) alloy-based composites find applications in sports and leisure equipment, aerospace, biomedical implants, and more. The research outlined here serves a critical need in the field of materials science and engineering, particularly regarding the development of advanced magnesium (Mg) alloy-based composites. In this study, we have created a new aluminum composite using the AZ31 alloy mixed with 5% boron carbide (B4C) and 5% molybdenum disulfide (MoS2) as reinforcement through a powder metallurgical technique. The magnesium alloy contains 3% aluminum and 1% zinc. Our research aims to understand the mechanical and tribological behaviors and the impact of Electrical Discharge Machining (EDM) process parameters on AZ31 magnesium alloy. We need to modify these properties for various applications. Many industrial researchers have studied the machinability of magnesium alloys using EDM. We conducted wear tests on AZ31 alloy reinforced with both B4C and MoS2 in altered quantities using a pin-on-disc setup. The outcome displays that the wear resistance of these composites is considerably better matched to other magnesium matrix composites (MMCs). We also measured various densities of the hybrid composite, including apparent density, green density, and sintered density, which were found to be 0.839, 1.495, and 1.504 g/cm3, respectively—better than other composites. In addition, the hybrid composite exhibited a substantial increase in micro hardness, reaching 22.012 HV, indicating improved wear resistance of the material. Comparatively, low density, minimum wear profile, and maximum hardness were recorded for the sample of AZ31 + 5%MoS2 + 5%B4C. The influence of EDM parameters was discussed.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Varying strain rates and elevated temperatures effects on the mechanical properties of AZ31B magnesium alloy;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3