Effect of the AWJM Method on the Machined Surface Layer of AZ91D Magnesium Alloy and Simulation of Roughness Parameters Using Neural Networks

Author:

Zagórski Ireneusz,Kłonica Mariusz,Kulisz MonikaORCID,Łoza Katarzyna

Abstract

This paper investigates the effect of change of the abrasive flow rate and the jet feed on the effectiveness of machining of AZ91D casting magnesium alloy. The evaluation of the state of the workpiece surface was based on surface and area roughness parameters (2D and 3D), which provided data on: irregularities formed on the workpiece edge surface (water jet exit), the surface quality after cutting, the workpiece surface chamfering, microhardness of the machined surface, and of specimen cross-sections (along the water jet impact). The process was tested for two parameter settings: abrasive flow rate 50 at cutting speed vf = 5–140 mm/min, and abrasive flow rate 100% (0.5 kg/min) at vf = 5–180 mm/min. The results demonstrate a significant effect of the abrasive flow rate and the jet feed velocity on the quality of machined surface (surface roughness and irregularities). In addition, selected 2D surface roughness parameters were modelled using artificial neural networks (radial basis function and multi-layered perceptron). It has been shown that neural networks are a suitable tool for prediction of surface roughness parameters in abrasive water jet machining (AWJM).

Publisher

MDPI AG

Subject

General Materials Science

Reference32 articles.

1. Kształtowanie Metali Lekkich;Oczoś,2012

2. Oddziaływanie warunków procesu cięcia AWJ na wybrane wskaźniki SGP;Borkowski;PAK,2012

3. Analiza porównawcza procesu cięcia wiązką laserową i strumieniem wodno-ściernym;Skoczylas;Adv. Sci. Technol.,2011

4. Analysis of deburring effectiveness and surface layer properties around edges of workpieces made of 7075 aluminium alloy

5. Analysis of chip fragmentation in AZ91HP alloy milling with respect to reducing the risk of chip ignition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3