Multiclass Land Cover Mapping from Historical Orthophotos Using Domain Adaptation and Spatio-Temporal Transfer Learning

Author:

Van den Broeck Wouter A. J.ORCID,Goedemé ToonORCID,Loopmans MaartenORCID

Abstract

Historical land cover (LC) maps are an essential instrument for studying long-term spatio-temporal changes of the landscape. However, manual labelling on low-quality monochromatic historical orthophotos for semantic segmentation (pixel-level classification) is particularly challenging and time consuming. Therefore, this paper proposes a methodology for the automated extraction of very-high-resolution (VHR) multi-class LC maps from historical orthophotos under the absence of target-specific ground truth annotations. The methodology builds on recent evolutions in deep learning, leveraging domain adaptation and transfer learning. First, an unpaired image-to-image (I2I) translation between a source domain (recent RGB image of high quality, annotations available) and the target domain (historical monochromatic image of low quality, no annotations available) is learned using a conditional generative adversarial network (GAN). Second, a state-of-the-art fully convolutional network (FCN) for semantic segmentation is pre-trained on a large annotated RGB earth observation (EO) dataset that is converted to the target domain using the I2I function. Third, the FCN is fine-tuned using self-annotated data on a recent RGB orthophoto of the study area under consideration, after conversion using again the I2I function. The methodology is tested on a new custom dataset: the ‘Sagalassos historical land cover dataset’, which consists of three historical monochromatic orthophotos (1971, 1981, 1992) and one recent RGB orthophoto (2015) of VHR (0.3–0.84 m GSD) all capturing the same greater area around Sagalassos archaeological site (Turkey), and corresponding manually created annotations (2.7 km² per orthophoto) distinguishing 14 different LC classes. Furthermore, a comprehensive overview of open-source annotated EO datasets for multiclass semantic segmentation is provided, based on which an appropriate pretraining dataset can be selected. Results indicate that the proposed methodology is effective, increasing the mean intersection over union by 27.2% when using domain adaptation, and by 13.0% when using domain pretraining, and that transferring weights from a model pretrained on a dataset closer to the target domain is preferred.

Funder

KU Leuven

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3