Contactless Cardiovascular Assessment by Imaging Photoplethysmography: A Comparison with Wearable Monitoring

Author:

van Es Valerie A. A.1ORCID,Lopata Richard G. P.1,Scilingo Enzo Pasquale2ORCID,Nardelli Mimma2ORCID

Affiliation:

1. Department of Biomedical Engineering, University of Technology, P.O. Box 513, 5600 Eindhoven, The Netherlands

2. Bioengineering and Robotics Research Centre E. Piaggio, Dipartimento di Ingegneria dell’Informazione, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy

Abstract

Despite the notable recent developments in the field of remote photoplethysmography (rPPG), extracting a reliable pulse rate variability (PRV) signal still remains a challenge. In this study, eight image-based photoplethysmography (iPPG) extraction methods (GRD, AGRD, PCA, ICA, LE, SPE, CHROM, and POS) were compared in terms of pulse rate (PR) and PRV features. The algorithms were made robust for motion and illumination artifacts by using ad hoc pre- and postprocessing steps. Then, they were systematically tested on the public dataset UBFC-RPPG, containing data from 42 subjects sitting in front of a webcam (30 fps) while playing a time-sensitive mathematical game. The performances of the algorithms were evaluated by statistically comparing iPPG-based and finger-PPG-based PR and PRV features in terms of Spearman’s correlation coefficient, normalized root mean square error (NRMSE), and Bland–Altman analysis. The study revealed POS and CHROM techniques to be the most robust for PR estimation and the assessment of overall autonomic nervous system (ANS) dynamics by using PRV features in time and frequency domains. Furthermore, we demonstrated that a reliable characterization of the vagal tone is made possible by computing the Poincaré map of PRV series derived from the POS and CHROM methods. This study supports the use of iPPG systems as promising tools to obtain clinically useful and specific information about ANS dynamics.

Funder

European Union Horizon 2020 Programme

Italian Ministry of Education and Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3