Evaluation of transformation invariant loss function with distance equilibrium in prediction of imaging photoplethysmography characteristics

Author:

Zhu ShangweiORCID,Liu Shaohua,Jing Xingjian,Li Bing,Liu Hao,Yang Yuchong,She Chundong

Abstract

Abstract Objective. Monitoring changes in human heart rate variability (HRV) holds significant importance for protecting life and health. Studies have shown that Imaging Photoplethysmography (IPPG) based on ordinary color cameras can detect the color change of the skin pixel caused by cardiopulmonary system. Most researchers employed deep learning IPPG algorithms to extract the blood volume pulse (BVP) signal, analyzing it predominantly through the heart rate (HR). However, this approach often overlooks the inherent intricate time-frequency domain characteristics in the BVP signal, which cannot be comprehensively deduced solely from HR. The analysis of HRV metrics through the BVP signal is imperative. Approach. In this paper, the transformation invariant loss function with distance equilibrium (TIDLE) loss function is applied to IPPG for the first time, and the details of BVP signal can be recovered better. In detail, TIDLE is tested in four commonly used IPPG deep learning models, which are DeepPhys, EfficientPhys, Physnet and TS_CAN, and compared with other three loss functions, which are mean absolute error (MAE), mean square error (MSE), Neg Pearson Coefficient correlation (NPCC). Main results. The experiments demonstrate that MAE and MSE exhibit suboptimal performance in predicting LF/HF across the four models, achieving the Statistic of Mean Absolute Error (MAES) of 25.94% and 34.05%, respectively. In contrast, NPCC and TIDLE yielded more favorable results at 13.51% and 11.35%, respectively. Taking into consideration the morphological characteristics of the BVP signal, on the two optimal models for predicting HRV metrics, namely DeepPhys and TS_CAN, the Pearson coefficients for the BVP signals predicted by TIDLE in comparison to the gold-standard BVP signals achieved values of 0.627 and 0.605, respectively. In contrast, the results based on NPCC were notably lower, at only 0.545 and 0.533, respectively. Significance. This paper contributes significantly to the effective restoration of the morphology and frequency domain characteristics of the BVP signal.

Funder

Major Research Plan

Publisher

IOP Publishing

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3