Abstract
Flexible pressure sensors have attracted a considerable amount of attention in various fields including robotics and healthcare applications, among others. However, it remains significantly challenging to design and fabricate a flexible capacitive pressure sensor with a quite broad linearity detection range due to the nonlinear stress–strain relation of the hyperelastic polymer-based dielectric material. Along these lines, in this work, a novel flexible capacitive pressure sensor with microstructured composite dielectric layer (MCDL) is demonstrated. The MCDL was prepared by enforcing a solvent-free planetary mixing and replica molding method, while the performances of the flexible capacitive pressure sensor were characterized by performing various experimental tests. More specifically, the proposed capacitive pressure sensor with 4.0 wt % cone-type MCDL could perceive external pressure loads with a broad detection range of 0–1.3 MPa, which yielded a high sensitivity value of 3.97 × 10−3 kPa−1 in a relative wide linear range of 0–600 kPa. Moreover, the developed pressure sensor exhibited excellent repeatability during the application of 1000 consecutive cycles and a fast response time of 150 ms. Finally, the developed sensor was utilized for wearable monitoring and spatial pressure distribution sensing applications, which indicates the great perspectives of our approach for potential use in the robotics and healthcare fields.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Open Fund of the Key Laboratory of Flight Techniques and Flight Safety, CAAC
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献