Ultra-Sensitive Flexible Tactile Sensor Based on Graphene Film

Author:

Lü XiaozhouORCID,Qi Liang,Hu Hanlun,Li Xiaoping,Bai Guanghui,Chen Jun,Bao Weimin

Abstract

Flexible tactile sensor can be integrated into artificial skin and applied in industrial robot and biomedical engineering. However, the presented tactile sensors still have challenge in increasing sensitivity to expand the sensor’s application. Aiming at this problem, this paper presents an ultra-sensitive flexible tactile sensor. The sensor is based on piezoresistive effect of graphene film and is composed of upper substrate (PDMS bump with a size of 5 mm × 7 mm and a thickness of 1 mm), medial Graphene/PET film (Graphene/PET film with a size of 5 mm × 7 mm, PET with a hardness of 2H) and lower substrate (PI with fabricated electrodes). We presented the structure and reduced the principle of the sensor. We also fabricated several sample devices of the sensor and carried out experiment to test the performance. The results show that the sensor performed an ultra high sensitivity of 10.80/kPa at the range of 0–4 kPa and have a large measurement range up to 600 kPa. The sensor has 4 orders of magnitude between minimum resolution and maximum measurement range which have great advantage compared with state of the art. The sensor is expected to have great application prospect in robot and biomedical.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3