Validation of a Modal Work Approach for Forced Response Analysis of Bladed Disks

Author:

Pinelli LorenzoORCID,Lori Francesco,Marconcini MicheleORCID,Pacciani Roberto,Arnone Andrea

Abstract

The paper describes a numerical method based on a modal work approach to evaluate the forced response of bladed disks and its validation against numerical results obtained by a commercial FEM code. Forcing functions caused by rotor–stator interactions are extracted from CFD unsteady solutions properly decomposed in time and space to separate the spinning perturbation acting on the bladed disk in a cyclic environment. The method was firstly applied on a dummy test case with cyclic symmetry where the forcing function distributions were arbitrarily selected: comparisons for resonance and out of resonance conditions revealed an excellent agreement between the two numerical methods. Finally, the validation was extended to a more realistic test case representative of a low-pressure turbine bladed rotor subjected to the wakes of two upstream rows: an IGV with low blade count and a stator row. The results show a good agreement and suggest computing the forced response problem on the finer CFD blade surface grid to achieve a better accuracy. The successful validation of the method, closely linked to the CFD environment, creates the opportunity to include the tool in an integrated multi-objective procedure able to account for aeromechanical aspects.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3