Improving Aeromechanical Performance of Compressor Rotor Blisk with Topology Optimization

Author:

Bandini Alberto1ORCID,Cascino Alessio1ORCID,Meli Enrico1ORCID,Pinelli Lorenzo1ORCID,Marconcini Michele1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Florence, Via S. Marta 3, 50139 Florence, Italy

Abstract

When it comes to modern design of turbomachinery, one of the most critical objectives is to achieve higher efficiency and performance by reducing weight, fuel consumption, and noise emissions. This implies the need for reducing the mass and number of the components, by designing thinner, lighter, and more loaded blades. These choices may lead to mechanical issues caused by the fluid–structure interaction, such as flutter and forced response. Due to the periodic aerodynamic loading in rotating components, preventing or predicting resonances is essential to avoid or limit the dangerous vibration of the blades; thus, simulation methods are crucial to study such conditions during the machine design. The purpose of this paper is to assess a numerical approach based on a topology optimization method for the innovative design of a compressor rotor. A fluid-structural optimization process has been applied to a rotor blisk which belongs to a one-and-a-half-stage aeronautical compressor including static and dynamic loads coming from blade rotation and fluid flow interaction. The fluid forcing is computed by some CFD TRAF code, and it is processed via time and space discrete Fourier transform to extract the pressure fluctuation components in a cyclic-symmetry environment. Finally, a topological optimization of the disk is performed, and the encouraging results are presented and discussed. The remarkable mass reduction in the component (≈32%), the mode-shape frequency shift from a fluid forcing frequency, and an overall relevant reduction in the dynamic response around Campbell’s crossing confirm the efficacy of the presented methodology.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3