Application of Radial Basis Functions for Partially-Parametric Modeling and Principal Component Analysis for Faster Hydrodynamic Optimization of a Catamaran

Author:

Harries Stefan,Uharek Sebastian

Abstract

The paper shows the application of a flexible approach of partially-parametric modelling on the basis of radial basis functions (RBF) for the modification of an existing hull form (baseline). Different to other partially-parametric modelling approaches, RBF functions allow defining sources which lie on the baseline and targets which define the intended new shape. Sources and targets can be corresponding sets of points, curves and surfaces. They are used to derive a transformation field that subsequently modifies those parts of the geometry which shall be subjected to variation, making the approach intuitive and quick to set up. Since the RBF approach may potentially introduce quite a few degrees-of-freedom (DoF) a principal component analysis (PCA) is utilized to reduce the dimensionality of the design space. PCA allows the deliberate sacrifice of variability in order to define variations of interest with fewer variables, then being called principal parameters (prinPar). The aim of combining RBFs and PCA is to make simulation-driven design (SDD) easier and faster to use. Ideally, the turn-around time within which to achieve noticeable improvements should be 24 h, including the time needed to set up both the CAD model and the CFD simulation as well as to run a first optimisation campaign. An electric catamaran was chosen to illustrate the combined approach for a meaningful application case. Both a potential and a viscous solver were utilized, namely, SHIPFLOW XPAN (SHF) and Neptuno (NEP), respectively. Rather than to compare the two codes in any detail the purpose of this was to study the efficacy of the proposed approach of combining RBF and PCA for solvers of different fidelity. All investigations were realized within CAESES, a versatile process integration and design optimisation environment (CAESES). It is shown that meaningful reductions of total resistance and, hence, improvements of energy efficiency can be realized within very few simulation runs. If a one-stop steepest descent is applied as a deterministic search strategy, for instance, some 10 to 12 CFD runs are needed to already identify better hulls, rendering turn-around times of a day of work and a night of number crunching a realistic option.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference26 articles.

1. Faster turn-around times for the design and optimization of functional surfaces

2. Upfront CAD—Parametric Modeling Techniques for Shape Optimization;Harries,2018

3. The Production of Points Uniformly Distributed in a Multidimensional Cube;Sobol,1976

4. Integration of Tools for Application Case Studies;Harries,2021

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3